limit of a multi-variable functions $\varepsilon-\delta$.

- Proving limit doesnot exist by shwing that two lienlts along diffeerent puths are different.
- squecze thm

Finding limitl using polar coordinates.
Recall $\quad(x, y) \longleftrightarrow(r, \theta) \quad\left\{\begin{array}{l}x=r \cos \theta \\ y=r \sin \theta\end{array}\right.$
In parficular, $\quad(x, y) \rightarrow(0,0) \Leftrightarrow r \rightarrow 0$
Example

$$
\begin{aligned}
& \text { (1) } \lim _{(x, y) \rightarrow(a, 01} \frac{x^{3}+y^{3}}{x^{2}+y^{2}} \\
& =\lim _{r \rightarrow 0} \frac{r^{3} \cos ^{3} \theta+r^{3} \sin ^{3} \theta}{r^{2}} \\
& =\lim _{r \rightarrow 0} r \cos ^{3} \theta+r \sin ^{3} \theta| | \cos ^{3} \theta+\sin 3 \mid \\
& \leq\left|\cos ^{3} \theta\right|+\left|\sin ^{3} \theta\right| \\
& \leq 2 \\
& \therefore\left|r\left(\cos ^{3} \theta+\sin ^{3} \theta\right)\right| \\
& \leqslant 2|r| \\
& \text { Aso, } \lim _{r \rightarrow 0} 2|r|=0
\end{aligned}
$$

\therefore By the squeare fierem. $\lim _{x \rightarrow 0} r\left(\cos ^{3} \theta+\sin ^{3} \theta\right)=0$

$$
\begin{aligned}
& \text { (2) } \lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}+x y}{2\left(x^{2}+y^{2}\right)} \\
& =\lim _{r \rightarrow 0} \frac{r^{2} \cos ^{2} \theta+r^{2} \cos \theta \sin \theta}{2\left(r^{2}\right)} \\
& =\lim _{r \rightarrow 0} \frac{\cos ^{2} \theta+\cos \theta \sin \theta}{2} \\
& =\frac{\cos ^{2} \theta+\cos \theta \sin \theta}{2}
\end{aligned}
$$

this value does depend on θ.

$$
\left.\begin{array}{l}
\text { if } \theta=0, \frac{1}{2} \\
\text { if } \theta=\frac{\pi}{2}, 0 \\
\rightarrow \text { array path } y \text {-acis }
\end{array}\right)
$$

\therefore limit does not exist.

$$
\begin{aligned}
& \text { (3) } \lim _{\substack{(x y) \\
\rightarrow(0,01}} x y \ln \left(x^{2}+y^{2}\right)=\lim _{r \rightarrow 0} r^{2} \cos \theta \sin \theta \ln \left(r^{2}\right) \\
& |\cos \theta \sin \theta| \leq 1 \\
& \left(\begin{array}{c}
\cos r \rightarrow 0 \\
r^{2} \rightarrow 0 \\
\theta_{n}(r y) \rightarrow-\infty
\end{array}\right)
\end{aligned}
$$

hence $\left|r^{2} \cos \theta \sin \theta \ln \left(r^{2}\right)\right| \leq\left|r^{2} \ln \left(r_{2}^{2}\right)\right|$

$$
\lim _{r \rightarrow 0} r^{2} \ln \left(r^{2}\right)=\lim _{r \rightarrow 0} \frac{\ln \left(r^{2}\right)}{\frac{1}{r^{2}}}=\lim _{r \rightarrow 0} \frac{2 \frac{2 r}{r^{2}}}{-2 \cdot \frac{1}{r^{3}}}
$$

$$
=\lim _{r \rightarrow 0}-r^{2}=0
$$

\therefore By squeeze theorem,

$$
\lim _{(x: y)} x y \ln \left(x^{2}+y^{2}\right)=0
$$

Iterated limit

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}
$$

$\lim _{x \rightarrow 0} \lim _{y \rightarrow 0} f(x, y)=$ taking limiest w. Nit $y \rightarrow 0$ and then takionglaint writ. $x \rightarrow 0$,
Similarly, we can consider $\lim _{y \rightarrow 0} \lim _{x \rightarrow 0} f(x . y)$.
Q Are they equal?

$$
\lim _{x \rightarrow 0} \lim _{y \rightarrow 0} f(x, y) \text { vs } \lim _{y \rightarrow 0} \lim _{x \rightarrow 0} f(x, y) \text { vs } \lim _{\substack{(x, y) \\ \rightarrow(0,0)}} f(x, y)
$$

Example

$$
\begin{aligned}
& f(x, y)=\frac{x+y}{x-y} \\
& \lim _{x \rightarrow 0} \lim _{y \rightarrow 0} f(x, y)=\lim _{x \rightarrow 0} \frac{x+0}{x-0}=\lim _{x \rightarrow 0} 1=1 .
\end{aligned}
$$

$$
\lim _{y \rightarrow 0} \lim _{x \rightarrow 0} f(x . y)=\lim _{y \rightarrow 0} \frac{y}{-y}=\lim _{y \rightarrow 0}-1=-1
$$

$$
\lim _{\substack{(x, y) \\
\rightarrow(0,0)}} \frac{x+y}{x-y}=\left\{\begin{array}{lll}
\text { alocy } & x=-y ; & 0 \text { ind } \\
\text { aloy } & y-0 ; 1
\end{array}\right.
$$

-. "1 does nof exlst.
Romk

(exerdise: if $(x, y) p(0,0)$ chede fuk)
(2) If all the three limits exist, they are equal.

Continuity
Let $f: A\left(\leqslant \mathbb{R}^{n}\right) \rightarrow \mathbb{R}, \quad \vec{a} \in A$.
Def f is continuous af $\vec{a} \in A$ if $\forall \varepsilon>0, \exists \delta>0 \quad$ sit.
if $\vec{x} \in A$ and $\|\vec{x}-\vec{a}\|<\delta$, then

$$
|f(\vec{x})-f(\vec{a})|<\varepsilon .
$$

Equinclent deffatitim f is contlouns at \vec{a} if $\lim _{\vec{x} \rightarrow \vec{a}} f(x)$ exists and equal to $f(\vec{a})$.
Def f is continuous it f is continuous of any point in A.
eq $\quad f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined by $f\left(x_{1} \cdots x_{n}\right)=x_{k} \quad 1 \leqslant k \leq n$ f is continuous.
(pf) We need to cheek f is continues at any $\vec{a}=\left(a_{1} \cdots a_{n}\right) \in \mathbb{R}^{n}$.
We reed to check that $\forall \varepsilon i o$, we can find a $\delta>0$ sit. $\quad\|\vec{x}-\vec{a}\|<\delta \Rightarrow|f(\vec{x})-f(\vec{a})|<\varepsilon$.

Pick $\delta=\varepsilon$, then

$$
\begin{aligned}
& \|\vec{x}-\vec{a}\|=\sqrt{\left(x_{1}-a_{1}\right)^{2}+\cdots+\left(x_{n}-a_{n}\right)^{2}} \\
& |f(\vec{x})-f(\vec{a})|=\left|x_{k}-a_{k}\right| \\
& \left|x_{k}-a_{k}\right| \leqslant \sqrt{\left(x_{1}-\left.a_{1}\right|^{2}+\cdots+\left(x_{n}-a_{n}\right)^{2}\right.}<\delta=\varepsilon . \\
& \sqrt{\left(x_{k}-a_{k}\right)^{2}}
\end{aligned}
$$

$\therefore f$ is contlunous at \vec{a}.
This is true for any $\vec{a}_{1}: f$ is continues.
The If $f . g: \Omega\left(\leq \mathbb{R}^{n}\right) \rightarrow \mathbb{R}$ are continuous at \vec{a}, then
(1) $f(\vec{x}) \pm g(\vec{x}), k f(\vec{x}), f(\vec{x}) g(\vec{x})$ are continuous ot $\vec{a} . \quad(k \in \mathbb{R})$
(2) If $g(\vec{a}) \neq 0$, then $\frac{f(\vec{x})}{g(\vec{x})}$ is continues at \vec{a}.
cprolf Follows from corresponding properties of limits. D
eq All polynomials are continuous.

$$
\begin{gathered}
\text { y } f(x, y, z): \mathbb{R}^{3} \rightarrow R \\
\text { " } x^{3}+3 y z+z^{2}
\end{gathered}
$$

We proved in the above example that $x . y, z$ are continues

$$
\Rightarrow \quad x^{3}=x \cdot x \cdot x
$$

Thu $3 y z=3 \cdot y \cdot z$ are all contlanuong

$$
z^{2}=z \cdot z
$$

$\underset{T h m}{ } x^{3}+3 y z+z^{2}$ is conthaws.
$A\left(s u\right.$, rational functions ($\left.\frac{\text { poly }}{\text { pily }}\right)$ are continus by (2) of Thu.
e.g. $\frac{x^{3}+y^{3}+y z}{x^{2}+y^{2}}$ is contras on

$$
\begin{aligned}
& \mathbb{R}^{3} \backslash\left\{(x \cdot y \cdot z) \mid x^{2}+y^{2}=0\right\} \\
& =\mathbb{R}^{3} \backslash\{z-\text { ornis }\}
\end{aligned}
$$

Let $Q(\vec{x})=\frac{P_{1}(\vec{x})}{P_{2}(\vec{x})}$ be a rational function. Suppose $p_{2}(\vec{a})=0$. $\leadsto Q(\vec{x})$ is not defined at \vec{a}. $Q(\vec{x})$ can le extended to a function continuove at $\vec{a} \Leftrightarrow \lim _{\vec{x} \rightarrow \vec{a}} Q(\vec{x})$ exists.
eq (1) $Q(x, y)=\frac{x^{2}-y^{2}}{x-y}$
$Q(x, y)$ is not defined on $\{x=y\}$.
$\frac{x^{2}-y^{2}}{x-y}=x+y$ is defied on while R^{2}.
for any $(a . a) \in\{x=y\}$,
$\lim _{x_{0} \rightarrow(a . a)} Q(x . y)=2 a \quad$ exists.

$$
\begin{aligned}
& \text { (2) } f(x, y)= \\
& \begin{aligned}
\lim _{(x, y) \rightarrow(1), 0)} f(x, y) & =\lim _{x \rightarrow 0} \frac{x y^{3}}{x^{2}+y^{2}} \quad . f \text { is art defied af }(0.07 . \\
& =\lim _{x \rightarrow 0} \frac{m+m^{3} x^{3}}{x^{2}+m^{2} x^{2} x} \\
& =\frac{m}{1+m^{2}} \\
& =m^{2}
\end{aligned}
\end{aligned}
$$

$\frac{m}{1+m^{2}}$ depend on m.
$\therefore 1 \operatorname{mf} f(x, y)$ does not exist. $(x, y) \rightarrow(0,0)$
$\therefore f$ cannot be extended to a continuas function on \mathbb{R}^{2}.
(3) $g(x, y)=\frac{x^{4}-y^{4}}{x^{2}+y^{2}}$ is not defined at $(0,0)$.

Can g be extend to a cont function on \mathbb{R}^{2} ?

$$
\begin{aligned}
& \begin{array}{l}
\lim _{\substack{(x, y) \\
\rightarrow(0,0)}} \frac{x^{4}-y^{4}}{x^{2}+y^{2}}
\end{array}=\lim _{r \rightarrow 0} \frac{r^{4}\left(\cos ^{4} \theta-\sin ^{4} \theta\right)}{r^{2}} \\
& \begin{array}{l}
\left(\begin{array}{l}
\left|r^{2}\left(\cos ^{4} \theta-\sin ^{4} \theta\right)\right| \\
\leq 2 r^{2} \\
\lim _{r \rightarrow 0} 2 r^{2}=0 \\
\text { By squeeze theses, } \\
1 \text { incl is } 0 .
\end{array}\right. \\
=\lim _{r \rightarrow 0}=0 \quad r^{2}\left(\cos ^{4} \theta-\sin ^{4} \theta\right)
\end{array}
\end{aligned}
$$

(or if is just $x^{2}+y^{2}$)

Thu If $f: \Omega\left(\subseteq \mathbb{R}^{n}\right) \rightarrow \mathbb{R}$ is contiven at \vec{a}. and g is 1 -variable function continues at $f(\vec{a})$. Then goof is continuous at \vec{a}.

$$
\begin{aligned}
\lim _{\vec{x} \rightarrow \vec{a}} g(f(\vec{x})) & =g\left(\lim _{\vec{x} \rightarrow \vec{n}} f(\vec{x})\right) \\
& =g(f(\vec{a}))
\end{aligned}
$$

eq Let $g(x)=|x|$.

$$
f\left(x_{1}-x_{n}\right)=x_{k}
$$

Both f and g are continuous.
\therefore By Thun, $g \cdot f\left(x_{1} \cdots x_{n}\right)=\left|x_{k}\right|$ is continuous.
eq $\sin \left(x^{2}+y z\right), e^{x-y}, \cos \left(\frac{1}{x^{2}+y^{2}}\right), \sqrt{x^{2}+y^{2}}$ are continuous on their duration

Partial derivatives
: rate of change of a function with respect to each variable.

Def $\quad f: \Omega\left(\subseteq \mathbb{R}^{n}\right) \rightarrow \mathbb{R}, \quad \Omega$ open
For $i=1, \cdots, n \quad$ dethe i-th partial derivative of f at $\vec{x}=\left(x_{1}, \cdots, x_{n}\right) \in \Omega$ to be

$$
\frac{\partial f}{\partial x_{i}}(\vec{x})=\lim _{h \rightarrow 0} \frac{f\left(x_{1} \cdots x_{i}+h \cdots x_{-1}-f\left(x_{1} \cdots x_{n}\right)\right.}{h}
$$

eq In $n=2$

$$
\begin{aligned}
& \text { In } n=2 \quad \lim _{h \rightarrow 0} \frac{f(x+h \cdot y)-f(x, y)}{h} \\
& \frac{\partial f}{\partial x}(x, y)=\lim _{h \rightarrow 0} \frac{f(x, y+h)-f(x, y)}{h} \\
& \frac{\partial f}{\partial y}(x \cdot y)=\lim _{h \rightarrow 0}
\end{aligned}
$$

notations

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=\partial_{1} f=D_{1} f=f_{x} \\
& \frac{\partial f}{\partial y}=\partial_{2} f=o_{2} f=f_{y} .
\end{aligned}
$$

eq $\quad f(x, y)=x^{2}+y^{2}$

$$
\begin{aligned}
& f(x, y)=x^{+y} \\
& \frac{\partial f}{\partial x}=\lim _{h \rightarrow 0} \frac{\left((x+h)^{2}+y^{2}\right)-\left(x^{2}+y^{2}\right)}{h}
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{2 x h+h^{2}}{h} \\
& =\lim _{h \rightarrow 0} 2 x+h \\
& =2 x
\end{aligned}
$$

(Tuking derviative regardiy y as constant)

$$
\frac{\partial f}{\partial y}=2 y
$$

$\frac{\partial f}{\partial x}(1,-1)=2>0 \Rightarrow f$ increapes as x increacses af $(1,-1)$
$\frac{\partial f}{\partial y}(1,-1)=-2<0 \Rightarrow f$ decreaces al y inerease at $(1 .-1)$
Rink $f(x, y)=\|(x, y)\|^{2}$

eg $\quad f(x, y, z)=x y^{2}-\cos (x z)$
Then

$$
\begin{aligned}
& f_{x}=y^{2}+z \sin (x z) \\
& f_{y}=2 x y \\
& f_{z}=x \sin (x z) .
\end{aligned}
$$

eq $f(x, y)= \begin{cases}1 & \text { it } x y \geqq 0 \\ 0 & \text { if } x y<0\end{cases}$
$\frac{\partial f}{\partial x}$ is flxing y, diffentate wirit x.
Along $y=1(\cdots) f(x, 1)= \begin{cases}1 & \text { if } x \geqslant 0 \\ 0 & \text { if } x<0\end{cases}$

$$
\therefore \frac{\partial f}{\partial x}(1.1)=0
$$

At $(0,0)$, along $y=0$.
$f(x, 0) \equiv 0$ for any $x \in \mathbb{R}$.

$$
\therefore \frac{\partial f}{\partial x}(0,0)=0
$$

Runt $\frac{\partial f}{\partial x}(0,0)=0$ exist.
Note that f is not contionous at $(0,0)$
$\therefore \frac{\partial f}{\partial x}, \frac{\partial f}{\partial x}$ exist at $(, 0)$
$\nRightarrow f$ is continuous at $(0,0)$.

